2012


E. N. Marinoni JS de O Y. Nicolter E. C. Raulfs P. Amara D. R. Dean and J. C. Fontecilla- Camps. (IscS-IscU)2 complex structure provide mechanistic insights of Fe2S2 biogenesis and transfer. Angewandte Chemie. 2012.  

Lukoyanov D YZY Barney BM Dean DR Seefeldt LC Hoffman BM. Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase. Proc Natl Acad Sci .USA. 2012.  

Seefeldt L. C. HBM and DRD. Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol.. 2012.  

2011


Danyal K Dean D. R. Hoffman B. M. and L. C. Seefeldt. Electron transfer within nitrogenase: Evidence for a ?deficit-spending? mechanism. Biochemistry. 2011;50:9255–9263.  

Doan PE Telser J. Barney B. M. Igarashi R. Y. Dean D. R. Seefeldt L. C. and B. M. Hoffman. 57Fe ENDOR spectroscopy and ?electron inventory? analysis indicate that nitrogenase FeMo-cofactor cycles through only two redox states. J. Am. Chem. Soc.. 2011;133:17329–17340.  

Dos Santos PC and DRD. Coordination and fine-tuning of nitrogen fixation in Azotobacter vinelandii. Molec Microbiol. 2011;79:1132–1135.  

Hamilton TL Jacobson M. Ludwig M. Boyd E. S. Bryant D. A. Dean D. R. and J. W. Peters. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii. J. Bacteriol.. 2011;193:4534–4536.  

Hamilton TL Ludwig M. Dixon R. Boyd E. S. Dos Santos P. C. Setubal J. Bryant D. A. Dean D. R. and J. W. Peters. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J. Bacteriol.. 2011;193:4477–4486.  

Liu Y Dos Santos P. C. Zhu X. Orlando R. Dean D. R. Soll D. and J. Yuan. The catalytic mechanism of sep-tRNA: Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide. J. Biol. Chem.. 2011.  

Lukoyanov D Dikanov S. A. Yang Z-Y. Barney B. M. Samoilova R. I. Narasimhulu K. V. Dean D. R. Seefeldt L. C. and B. M. Hoffman. ENDOR/HYSCORE Studies of the Common Intermediate Trapped during Nitrogenase Reduction of N2H2, CH3N2H, and N2H4 Support an alternating reaction pathway for N2 reduction. J. Am. Chem. Soc.. 2011;133:11655–11664.  

Yang Z-Y Dean D. R. and L. C. Seefeldt. Molybdenym nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons. J. Biol. Chem.. 2011;286:19417–19421.  

2010


Danyal K D. Mayweather D. R. Dean L. C. Seefeldt and B. M. Hoffman. Conformational gating of electron transfer from the nitrogenase Fe protein to MoFe protein. J. Am. Chem. Soc.. 2010:6894–6896.  

Danyal K Inglet B. Vincent K. A. Barney B. M. Hoffman B. M. Armstrong F. A. Dean D. R. and Seefeldt L. C. Uncoupling nitrogenase: Catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP. J. Am. Chem. Soc.. 2010;132:13197–13199.  

Dos Santos PC and DRD. Electrons in Fe-S protein assembly. Nature Chem. Biol.. 2010;6:700–701.  

Lukoyanov D Z. Y. Yang D. R. Dean L. C. Seefeldt and B. M. Hoffman. Is Mo involved in hydride binding of the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J. Am. Chem. Soc.. 2010;132:2526–2528.  

Sarma RBMB S. Keable D. R. Dean and J. W. Peters. Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha 70 Ile MoFe protein. J. Inorg. Biochem.. 2010;104:385–389.  

Yang Z -Y. Seefeldt L. C. Dean D. R. Cramer S. P. and S. J. George. Steric control of the Hi-CO MoFe nitrogenase complex revealed by stopped-flow infra-red spectroscopy. Angew. Chemie. 2010;50:272–275.  

2009


Barney B. M. DL R. Y.Igarashi M. Laryukhin T.C Yang D. R. Dean B. M. Hoffman L. C. Seefeldt. Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. Biochemistry. 2009;38.  

Barney B. M. MGY P. C. Dos Santos D. R. Dean and L. C. Seefeldt. A substrate channel in the nitrogenase MoFe protein. J Biol Inorg Chem.. 2009;7:1015–1022.  

Hoffman BM D. R. Dean and L. C. Seefeldt. Climbing Nitrogenase: Towards the mechanism of N2 reduction. Accounts of Chemical Research. 2009;19:609–619.  

Seefeldt LC B. M. Hoffman and D. R. Dean. Lance Seefeldt, Brian Hoffman, and Dennis R. Dean. Annual Reviews of Biochemistry. 2009;78:701–722.  

Setubal J. C. PC dos S B. S. Goldman H. Ertesvåg G. Espin L. M Rubio S. Valla N. F. Almeida D. Balasubramanian L. Cromes L. Curatti Z. Du E. Godsy B. Goodner K. Hellner-Burris J. A. Hernandez K. Houmiel J. Imperial C. Kennedy T. J. Larson P. Latreille L. S. Ligon J. Lu M. Maerk N. M. Miller S. Norton I. P. O'Carroll I. Paulsen E. C Raulfs R. Roemer J. Rosser D. Segura S. Slater S. L. Stricklin D. J. Studholme J. Sun C. J. Viana E. Wallin B. Wang C. Wheeler H. Zhu D. R. Dean R. Dixon R and D Wood. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol.. 2009;191:4534–4545.  

2008


Bandyopadhy S S. G. Naik I. P. O?Carroll B.-H. Huynh D. R. Dean M. K. Johnson and P. C. Dos Santos. A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier. Biol. Chem.. 2008;283:14092–14099.  

Dos Santos PC and DRD. A newly discovered role for iron-sulfur clusters. Proceedings of the National Academy of Sciences (USA). 2008;105:11589–11590.  

2007


Chandramouli K M.-C. Unciuleac S. Naik D.R. Dean B.-H. Huynh and M. K. Johnson. Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46: 6804-6811. Biochemistry. 2007;46:6804–6811.  

Dos Santos PC D. C. Johnson B. E. Ragle M. C. Unciuleac and D. R. Dean. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J. Bacteriol.. 2007;189:2854–2862.  

Dos Santos PC S. M. Noakes B. M. Barney L. C. Seefeldt and D. R. Dean. Alkyne substrate interaction within the nitrogenase MoFe protein. J. Inorg, Biochem.. 2007;101:1642–1648.  

Hernandez JA R. Y. Igarashi B. Soboh L. Curatti D. R. Dean P. W. Ludden and L. M. Rubio. NifX and NifEN exchange NifB-co and the VK-cluster, a newly discovered intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol. Microbiol.. 2007;63:177–192.  

Lukoyanov D B. Barney D. R. Dean L. C. Seefeldt and B. M. Hoffman. Connecting nitrogenase intermediates with the N2 reduction kinetic scheme by a relaxation protocol and identifying the N2 binding state. Proc, Nat. Acad Sci.. 2007;104:1451–1455.  

Lukoyanov D V. Pelmenschikov N. Maeser M. Laryukhin T. C. Yang L. Noodleman D. R. Dean D. A., Case LCS and H B. H. Testing if the interstitial aton, X, of the nitrogenase molybdenum-iron cofactor is N or C: ENDOR, ESEEM and DFT studies of the S=3/2 resting state in multiple environments. Inorganic Chemistry. 2007.  

Unciuleac M-C K. Chandramouli S. Naik S. Mayer B.-H. Huynh B.-H. M. K. Johnson and D. R. Dean. In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry. 2007;46:6812–6821.  

2006


Barney BM D. Lukoyanov T.-C. Yang D. R. Dean B. M. Hoffman and L. C. Seefeldt. A Methyldiazene (HN=N-CH3)-derived species bound to the nitrogenase active site FeMo-cofactor: implications for mechanism. Proc. Nat. Acad. Sci.. 2006;103:17113–17118.  

Barney BM H.-I. Lee P. C. Dos Santos D. R. Dean and L. C. Seefeldt. Breaking the N2 triple bond: insights into the nitrogenase mechanism. Dalton Trans.. 2006;19:2277–2284.  

Barney BM J. McLead D. Lukoyanov M. Laryukhin T.-C. Yang B. M. Hoffman D. R. Dean and L. C. Seefeldt. 2006. Diazene is a substrate for nitrogenase: Insights into the N2 reduction reaction pathway. Biochemistry. 2006;46:6784–6794.  

Frazzon AP-G M. V. Ramirez U. Warek J. Frazzon D. R. Dean and B. S. Winkel. Functional analysis of Arabidopsis thaliana genes involved in mitochondrial iron-sulfur cluster assembly. Plant Molecular Biology 64: 225-240. Molecular Biology. 2006;64:225–240.  

Johnson DC M. C. Unciuleac and D. R. Dean. Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J. Bact.. 2006;188:7551–7561.  

2005


Barney BM M. Laryukhin R. Y. Igarashi H.-I. Lee P. C. Dos Santos T.-C. Yang B. M. Hoffman D. R. Dean and L. C. Seefeldt. Trapping a hydrazine reduction intermediate on the nitrogenase active site. Biochemistry. 2005;44:8030–8037.  

Barney BM T.-C. Yang R. Y. Igarashi P. C. Dos Santos M. Laryukhin H.-I. Lee B. M. Hoffman D. R. Dean and L. C. Seefeldt. Intermediates trapped during nitrogenase reduction of N2, CH3N2H, and N2H4. J. Am. Chem. Soc.. 2005;127:14960–61.  

Dos Santos PC, Igarashi RY, Lee HI, Hoffman BM, Seefeldt LC, Dean DR. Substrate interactions with the nitrogenase active site. Acc Chem Res. 2005;38:208–214.  http://www.ncbi.nlm.nih.gov/pubmed/15766240

Igarashi RY M. Laryukhin P. C. Dos Santos H.-I. Lee D. R. Dean L. C. Seefeldt and B. M. Hoffman. Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J. Am. Chem. Soc.. 2005;127:6231–6241.  

Johnson DC D. R. Dean A. D. Smith and M. K. Johnson. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem.. 2005;4:247–281.  

Johnson DC P. C. Dos Santos and D. R. Dean. NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem. Soc. Trans.. 2005;33:90–93.  

Lee H-I M. Sørlie J. Christiansen T.-C. Yang J. Shao D. R. Dean B. J. Hales and B. H. Hoffman. Structure, electron inventory, kinetic assignment, and bonding of nitrogenase turnover intermediates with C2H2 and CO: An 57Fe and 1H ENDOR study. J. Am. Chem. Soc.. 2005;127:15880–90.  

Smith AD G. N. Jameson P. C. Dos Santos J. N. Agar S. Naik C. Krebs J. Frazzon D. R. Dean B. H. Huynh and M. K. Johnson. 2005. NifS-mediated assembly of [4Fe-4S] clusters in the N-terminal and C-terminal domains of the NifU scaffold protein. Biochemistry. 2005;44:12955–12969.  

Smith AD J. Frazzon D. R. Dean and M. K. Johnson. Role of conserved cysteines in mediating sulfur transfer from IscS to IscU. FEBS Lett.. 2005;579:5236–40.  

Yang T-C N. K. Maeser M. Laryukhin H.-I. Lee D. R. Dean L. C. Seefeldt and B. M. Hoffman. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc.. 2005;127:12804–12805.  

2004


Barney BM R. Y. Igarashi P. C. Dos Santos D. R. Dean and L. C. Seefeldt. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J. Biol. Chem.. 2004;279:53621–4.  

Dos Santos PC A. D. Smith J. Frazzon V. L. Cash M. K. Johnson and D. R. Dean. Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein. J. Biol. Chem.. 2004;279:19705–11.  

Dos Santos PC D. R. Dean Y. Hu and M. W. Ribbe. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev.. 2004;104:1159–1173.  

Igarashi RY P. C. Dos Santos W. G. Niehaus I. G. Dance D. R. Dean and L. C. Seefeldt. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. J. Biol. Chem.. 2004;279:34770–5.  

Lee HI R. Y Igarashi M. Laryukhin P. E. Doan P. C. Dos Santos D. R. Dean L. C. Seefeldt and B. M. Hoffman. An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc.. 2004;126:9563–9.  

Mayer SM P. Dos Santos L.C. Seefeldt and D.R. Dean. Strategies for the functional analysis of the Azotobacter vinelandii MoFe protein and its active site FeMo-cofactor. In: Catalysts for nitrogen fixation: Nitrogenases, relevant chemical models, and commercial processes. Kluwer Academic Publishers; 2004:141–159.  

Seefeldt LC I. G. Dance and D. R. Dean. Substrate interactions with nitrogenase: Fe versus Mo. Biochemistry. 2004;43:1401–1409.  

2003


Agar JN D. R. Dean and M.K. Johnson. Iron-sulfur cluster biosyntheses. In: Physiology of Anaerobic Bacteria. Springer-Verlag; 2003:46–66.  

Benton PM M. Laryukhin S. M. Mayer B. M. Hoffman D. R. Dean and L. C. Seefeldt. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an a-70-substituted MoFe protein. Biochemistry. 2003;42:9102–9109.  

Frazzon J and DRD 2003. Formation of iron-sulfur clusters in bacteria: An emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 2003;7:166–73.  

Lee HI L.M. Cameron J. Christiansen P.D. Christie R.C. Pollock R. Song M. Sorlie W.H. Orme-Johnson D. R. Dean B.J. Hales and B.M. Hoffman. Q-band ENDOR studies of the nitrogenase MoFe protein under turnover conditions: Substrate-inhibitor-binding to and metal-ion valencies of the FeMo-cofactor. In: Paramagnetic Resonance of Metallobiomolecules. ACS Symposium Series 858; 2003:150–178.  

Lee HI P. M. Benton M. Laryukhin R. Y. Igarashi D. R. Dean L. C. Seefeldt and B. M. Hoffman. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc.. 2003;125:5604–5.  

Ruttimann-Johnson C L. M. Rubio D. R. Dean and P. W. Ludden. VnfY is required for full activity of the vanadium-containing dinitrogenase in Azotobacter vinelandii. J. Bacteriol.. 2003;185:2383–6.  

2002


Dean FJ and DR. Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii. Met. Ions Biol. Syst.. 2002;39:163–86.  

Frazzon J and DRD. Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii. In: Metal ions in biological systems. Vol. 39. Marcel Dekker; 2002:163–186.  

Frazzon J J. R. Fick and D. R. Dean. Biosynthesis of iron-sulphur clusters is a complex and highly conserved process. Biochem. Soc. Trans. 2002;30:680–685.  

Mayer SM P. Dos Santos L.C. Seefeldt and D.R. Dean. Use of short-chain alkynes to locate the nitrogenase catalytic site. In: Nitrogen Fixation at the Millenium. Elsevier Science; 2002:137–154.  

Mayer SM W. G. Niehaus and D. R. Dean. Reduction of short chain alkynes by a nitrogenase alpha-70Ala-substituted MoFe protein. J. Chem. Soc., Dalton Trans. 2002:802–807.  

2001


Benton PMC J. Christiansen D.R. Dean and L.C. Seefeldt. Stereospecificity of acetylene reduction catalyzed by nitrogenase. J. Am. Chem. Soc.. 2001;123:1822–1827.  

Benton PMC S.M. Mayer J. Shao B.M. Hoffman D.R. Dean and L.C. Seefeldt. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Biochemistry. 2001;40:13816–13825.  

Christiansen J D.R. Dean and L.C. Seefeldt. Mechanistic features of the Mo-containing nitrogenase. Ann. Rev. Plant. Physiol. Plant. Mol. Biol.. 2001;52:269–295.  

Frazzon J and DRD 2001. Feedback regulation of iron-sulfur cluster biosynthesis. Proc. Natl. Acad. Sci. USA. 2001;98:14751–14753.  

Krebs K J. N. Agar A. D. Smith J. Frazzon D. R. Dean B. H. Huynh and M. K. Johnson. Biochemistry TI -. IscA, an alternate scaffold for Fe-S cluster biosynthesis.. 2001;40:14069–14080 ST -. IscA, an alternate scaffold for .  

Smith AD J. N. Agar K. A. Johnson J. Frazzon I. J. Amster D. R. Dean and M. K. Johnson. Sulfur transfer from IscS to IscU: The first step in iron-sulfur cluster biosynthesis. J. Am. Chem. Soc.. 2001;123:11103–11104.  

Sørlie M. JC B. J. Lemon J. W. Peters D. R. Dean and B. J. Hales. Mechanistic features and structure of the nitrogenase a-Gln-195 MoFe protein. Biochemistry. 2001;40:1540–1549.  

2000


Agar JN C. Krebs J. Frazzon B.H. Huyhn D. R. Dean. and M.K. Johnson. IscU as a scaffold for iron-sulfur cluster biosyntheses: Sequential assembly of [2Fe-4S] cluster in IscU. Biochemistry. 2000;39:7856–7862.  

Agar JN L. Zheng V.L. Cash D.R. Dean and M.K. Johnson. Role of the IscU protein in iron-sulfur cluster biosynthesis: IscS-mediated assembly of a [Fe2S2] cluster in IscU. J. Am. Chem. Soc.. 2000;122:2136–2137.  

Agar JN P. Yuvaniyama R. F. Jack V. L. Cash and D. R. Dean. Modular organization and identification of a mononuclear iron-binding site within the NifU protein. J. Biol. Inor. Chem. 2000;5:167–177.  

Chan JM W. Wu D.R. Dean and L.C. Seefeldt. Construction and characterization of a heterodimeric iron protein: Defining roles for adenosine triphosphate in nitrogenase catalysis. J.Am. Chem. Soc.. 2000;39:7221–7228.  

Christiansen J J.M. Chan L.C. Seefeldt and D. R. Dean. The role of the MoFe protein a-125Phe and b-125Phe residues in Azotobacter vinelandii MoFe protein-Fe protein interaction. J. Inorg. Biochem. 2000;80:195–204.  

Christiansen J J.M. Chan L.C. Seefeldt and D. R. Dean. Use of amino acid substitutions to study the functional properties of the nitrogenase MoFe protein. In: Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process. Horizon Scientific Press; 2000.  

Christiansen J L.C. Seefeldt and D. R. Dean. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem.. 2000;275:36104–36107.  

Christiansen J V. L. Cash L. C. Seefeldt and D. R. Dean. Isolation and characterization of an acetylene-resistant nitrogenase. J. Biol. Chem.. 2000;275:11459–11464.  

Lee HI M. Sorlie J. Christiansen R. Song D.R. Dean B.J. Hales and B.M. Hoffman. Acetylene binding to the nitrogenase MoFe protein. J.Am. Chem. Soc.. 2000;122:5582–5587.  

Yuvaniyama P J.N. Agar V.L. Cash M.K. Johnson and D. R. Dean. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA. 2000;97:599–604.  

1999


Chan JM J. Christiansen D.R. Dean and L.C. Seefeldt. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Biochemistry. 1999;38:5779–5785.  

Christiansen J and D.R. Dean. Nitrogen Fixation. In: Enclyclopedia of Molecular Biology. Vol. 1-4.; 1999:1617–1623.  

Jung Y-S H.S. Gao-Sheridan J. Christiansen D.R. Dean and B.K. Burgess. 1999 Purification and biophysical characterization of a new [2Fe-2S] ferrdoxin from Azotobacter vinelandii, a putative[Fe-S] cluster assembly/repair protein. J. Biol.Chem. 1999;274:32402–32410.